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1 Abstract

The summer of 2003 was probably the hottest in Europe since at latest AD 1500 (Luterbacher et al.
2004; Schar et al. 2004; Beniston 31; Black et al. 2004), and unusually large numbers of heat related
deaths were reported in France, Germany, and Italy (Institut de veille sanitaire 2003). It 1s an 1llposed
question whether the 2003 heatwave was caused, in a simple deterministic sense, by a modification of
the external influences on climate, for example increasing concentrations of greenhouse gases in the
atmosphere, because almost any such weather event might have occurred by chance in an unmodified
climate. However, it 1s possible to estimate by how much human activities may have increased the risk
of the occurrence of such a heatwave (Palmer and Raisanen 2002; Allen 2003; Stone and Allen 2005).
Here we use this conceptual framework to estimate the contribution of human-induced increases in
atmospheric concentrations of greenhouse gases and other pollutants to the risk of the occurrence of
unusually high mean summer temperatures throughout a large region of continental Europe. Using
a threshold for mean summer temperature that was exceeded in 2003, but in no other year since the
start of the instrumental record in 1851, we estimate it 1s very likely (confidence level >90%) that
human influence has at least doubled the risk of a heatwave exceeding this threshold magnitude.

2 The summer of 2003 in Europe
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Figure 1 June-August 2003 temperature anomalies (relative to 1961-90 mean, in K) over the region shown in inset. Shown
are observed temperatures (thin black line, with low-pass filtered temperatures in thick black line), modelled temperatures
from four HadCM3 simulations including both anthropogenic and natural forcings (ALL) to 2000 (thin red-yellow lines,
ensemble average in thick red line), and average of four HadCM3 simulations including natural forcings only (NAT) (thick
green line). Also shown (thin red-yellow lines) are three simulations (initialized in 1989) including changes in green-
house gas and sulphur emissions according to the SRES A2 scenario to 2100. The inset shows observed summer 2003

temperature anomalies, in K.
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Wiirttemberg, Germany, preceding and during the
summer 2003. Total daily mortality data are in
black, with the mean seasonal evolution in red. Note
the peak in August 2003, due to the heatwave,
which caused 900-1300 extra deaths in a popula-

L|”|,|[ | tion of 10.7 million people. From Koppe, C. &
[,l Nm l‘ ”H ﬂlny | m Jendritzky, G. in Gesundheitliche Auswirkungen der
| Wll b

Hitzewelle im August 2003 (Sozialministerium Baden-

e ————
=

——

P ———
——
| S—

—

i
Hl Wiirttemberg, Stuttgart, 2004); www.gesundheit-
bw.de/download/bericht_gesundh_auswirkungen.pdf.
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3 Variability in observed and simulated summer tem-
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4 Contribution of forcings to observed warming

Construct observed summer temperature changes with a regression model (Allen and Stott 2003):
fObS — ?il ﬁz(fz + ﬁi) + 1

Here (3; is the scaling factor corresponding to forcing ¢ that is to be estimated in the regression. Un-

certainty in the estimation arises from uncertainty in the observed changes (/) and model responses

(V).
a Figure 4 Estimated likelihood functions for anthro-

y! pogenic and natural contributions to European summer
I temperature changes.
0 2_ a) The curves show estimated distributions of anthro-
§ pogenic (red) and natural (green) scaling factors (/3;) on
§ O_ model simulated responses.
:gm - b) 1990s summer temperatures (relative to pre-
:ch I industrial climate) including all external drivers of cli-
—2 mate change (red) and with anthropogenic drivers re-
_ moved (green).
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A scaling factor of zero (horizontal solid line in a)) im-

1.0 plies no contribution to observed 1990s temperatures
from this driver, while unity (horizontal dashed line
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B
I width of these distributions reflects the uncertainties for
these probabilities.
0.0 — -

Attributed 1990s temperatures (K) &

Estimated likelihood (nomalized)

S Change in risk of record hot summer

We can scale the model responses by the scaling factors above and add variability to

get estimates of the likelihood of a record hot summer (1.6 K, 1.e. hotter than 2001).
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Figure 5 Change in risk of mean European summer temperatures exceeding the 1.6 K threshold.
a) Histograms of instantaneous return periods under late 20th century conditions in the absence of anthropogenic climate
change (pg, green line) and with anthropogenic climate change (p, red line).
b) Fraction attributable risk (FAR = ]%). A value of AR = 1 implies that the event occurs in the presence of an-
thropogenic climate change but not in it’s absence, a value of F’ AR = 0 implies no change in the likelihood, a value of
FAR = 0.5 implies a doubling of the likelihood. Also shown, as the vertical line, is the best estimate of FAR, the mean
risk attributable to anthropogenic factors averaged over the distribution.
The left hand plots show the result if an extreme value distribution is used to estimate the likelihood for both the industrial

and non-industrial cases, while the right plots show the result if a Gaussian distribution is used for the industrial case.

004 7 7 - - - - Figure 6 As in Figure 5b, but using simulation from the
Challenge ensemble (Selten et al. 2003) of 62 simula-

tions with the NCAR CCSMI1.4 model and a slightly
different methodology.
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6 Discussion

Quantitatively, the result does appear to depend on the climate model used as well as on the statistical
models used. However, qualitatively the results appear fairly robust to these points. In particular, the
conclusion that it 1s very likely (confidence level >90%) that human influence has at least doubled
the risk of a record hot summer appears unaffected.



